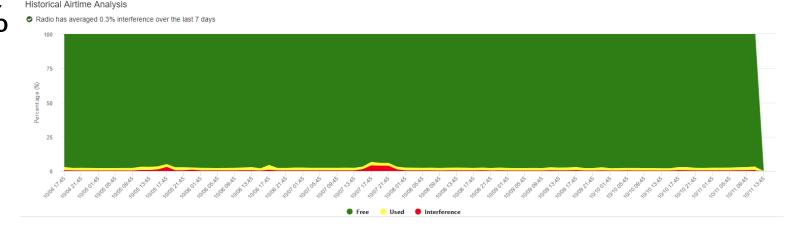
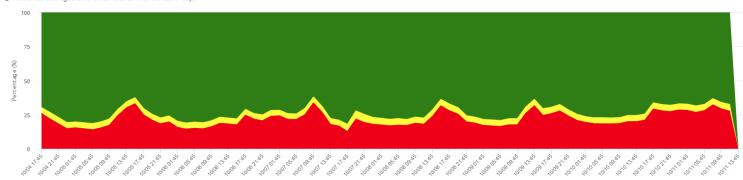

Ensuring Successful Home Wi-Fi Deployments

Bret McElwee

Wi-Fi Standards


Getting to Know the Wi-Fi Spectrum


	2.4 GHz	5 GHz
Number of non-overlapping 20 MHz channels	3	18 (including DFS channels)
Number of non-overlapping 40 MHz channels	1	9
Number of non-overlapping 80 MHz channels	0	4
Range	Better	Good

2.4 GHz vs 5 GHz – A Typical Home

- 2.4 GHz averaged 21.5% interference
- 5 GHz averaged 0.3% interference
- These are results in a condominium and are fairly typical
- 5 GHz is still less congested than 2.4GHz in most locations

Free Output O

Comparison of IEEE 802.11 Standards

Standard	Release Date	Band (GHz)	Bandwidth (MHz)	Modulation	Advanced Technologies	Maximum Data Rate (PHY Rate)
802.11	1997	2.4	20	DSSS, FHSS	N/A	2 Mbps
802.11a	1999	5	20	OFDM	N/A	54 Mbps
802.11b	1999	2.4	20	DSSS	N/A	11 Mbps
802.11g	2003	2.4	20	DSSS, OFDM	N/A	54 Mbps
802.11n	2009	2.4, 5	20, 40	OFDM	MIMO (up to 4 spatial streams)	600 Mbps
802.11ac	2013	5	20, 40, 80, 160	OFDM	MIMO, MU-MIMO (up to 8 spatial streams)	6.93 Gbps
802.11ax	2019	2.4, 5	20, 40, 80, 160	OFDM, 1024 QAM	MIMO, UL & DL MU-MIMO*, Scheduled OFDMA**, Sub- Bands*** 1024-QAM****	4x 802.11ac speeds

Bottom Line: 11ax allows you to go further and faster than 11ac

802.11ax Features

*Multi-User MIMO on both Downlink and Uplink

**Scheduled OFDMA allows media access in time and frequency space for higher efficiency

Sub-Bands allow greater range at the expense of lower bandwidth *1024-QAM – 25% Higher Capacity than 256-QAM in 11ac

Wi-Fi Data Elements

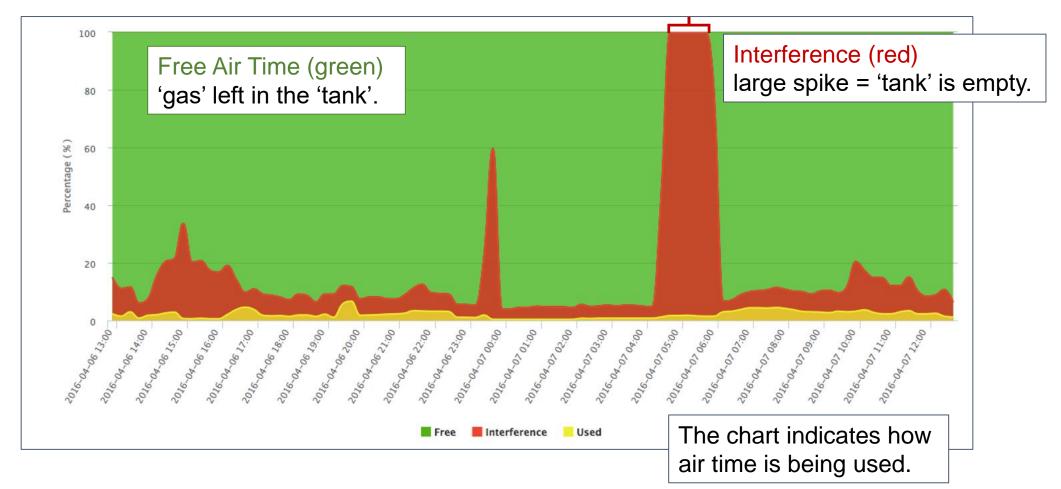
You can't manage a Wi-Fi network unless you can see inside of it.

Why are Wi-Fi Data Elements needed?

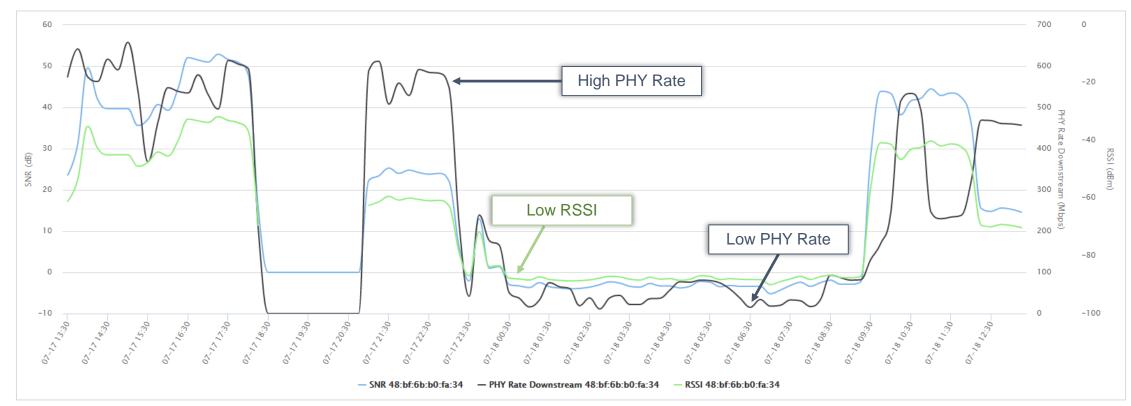
- All support calls cost money and 10% percentage of Wi-Fi related calls require expensive truck rolls.
- To trouble shoot and manage Wi-Fi networks, it is critical to be able to see what is going on in the network.
- Self Organizing Wi-Fi autonomously reconfigures the network for optimal performance. Without Data Elements, there is no way to measure performance or see if reconfiguration has improved the performance

To see inside the Wi-Fi network, a foundation of Wi-Fi network **Data Elements** is needed to **measure performance** of the network.

Why are Wi-Fi Data Elements needed?

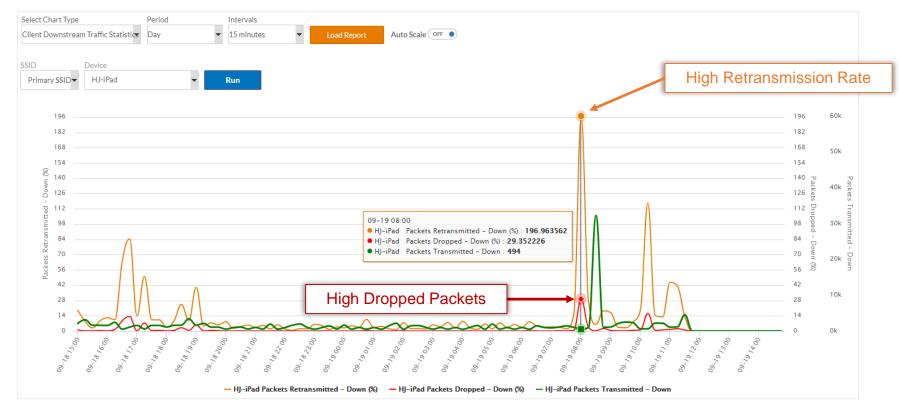

Wi-Fi Key Data Elements are used by tools such as Calix Support Cloud Smart Check to provide a simplified view of what is going on with client devices in the home.

6 Key Data Elements

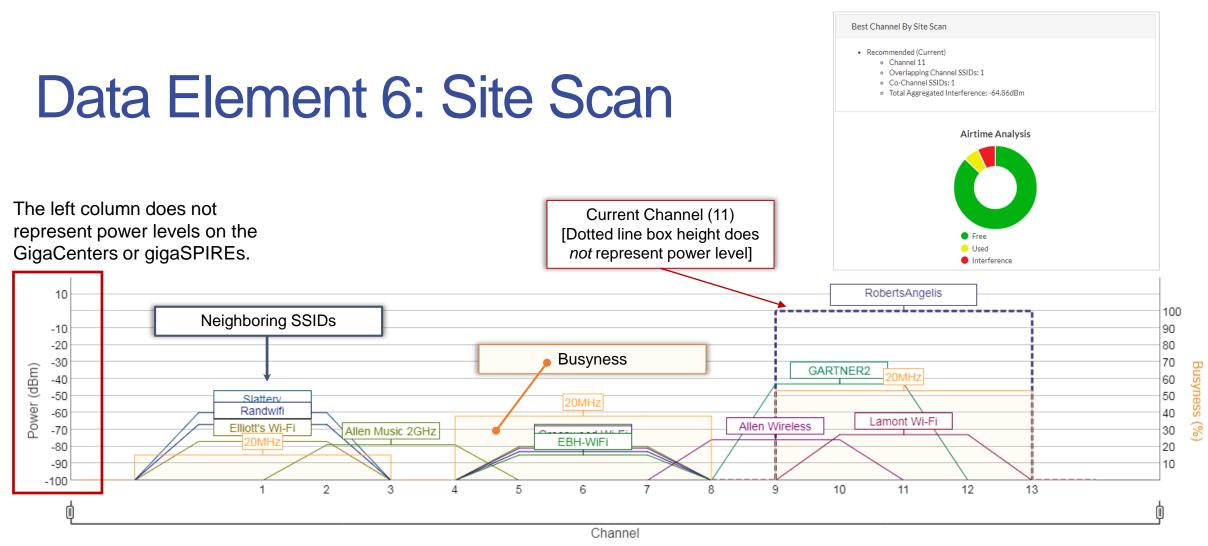

- 1. Air Time Usage used by Access Points and Clients
- 2. Client PHY Rates: Maximum Capability and Actual
- 3. Received Signal Strength (RSSI)
- 4. Retransmitted Packet Rates
- 5. Dropped Packet Rates
- 6. Site Scans (Measurements of all detected neighboring Access Points and Channels)

Data Element 1: Air Time Usage

No Free Air Time


Data Element 2 - 3: Client PHY Rates / RSSI

Poor Client PHY rates or low Received Signal Strength Indicator (RSSI) can result in poor performance for the user applications.


- May be due to legacy Wi-Fi STA technology, low signal strength, distance or walls between STA and AP, or interference.
- PHY rate needed depends on applications, IoT may not need high PHY rates, however 4K Video Streaming does.

Data Element 4 - 5: Dropped and Retransmitted Packet Rates

Monitor Packet Error and Retransmission rates for an indicator of the overall quality of the connection.

- High packet retransmission rates can be considered early warning signs of poor Wi-Fi connections.
- Having the ability to measure both packet error rate and retransmission rate is essential.

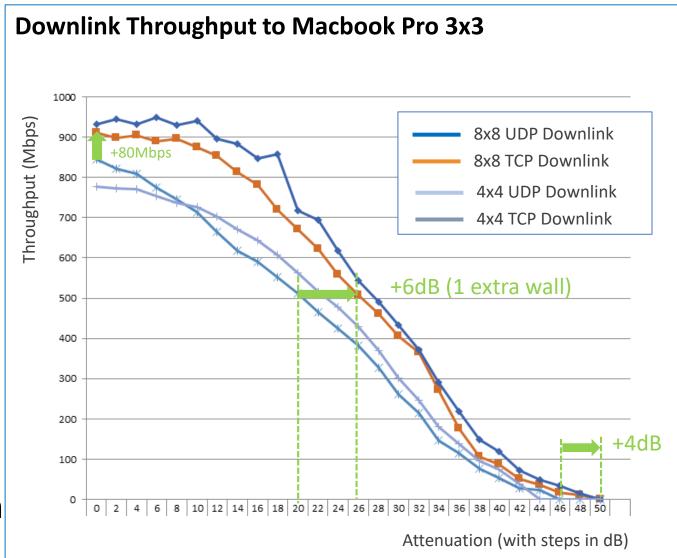
A Site Scan provides a visual representation of local Wi-Fi environment. The Calix site scan algorithm recommends the best available channel by analyzing both detected neighbors and channel busyness.

Calix Industry Initiative – Wi-Fi Alliance Data Elements

Standardize a Set of Key Wi-Fi Data Elements in the WFA:

- **Dec. 2017:** Wi-Fi Alliance starts Task Group for Data Elements based on CableLabs/Calix/Nokia proposal
- Sept 2018: Certification wave #4 successfully completed
- Oct. 2018: Data Elements Technical Specification completed
- End 2018: Start release 2.0 of WFA Data Elements

Why should you care? A: With a standard set of DE's an operator can ask vendors to comply and any cloud software will interoperate with the devices


Task Group Formation Proposal: Key Wi-Fi Data Elements Standardization

Hal Roberts, Calix Josh Redmore, CableLabs Tim Carey, Nokia August 29th, 2017

Chipset Tests

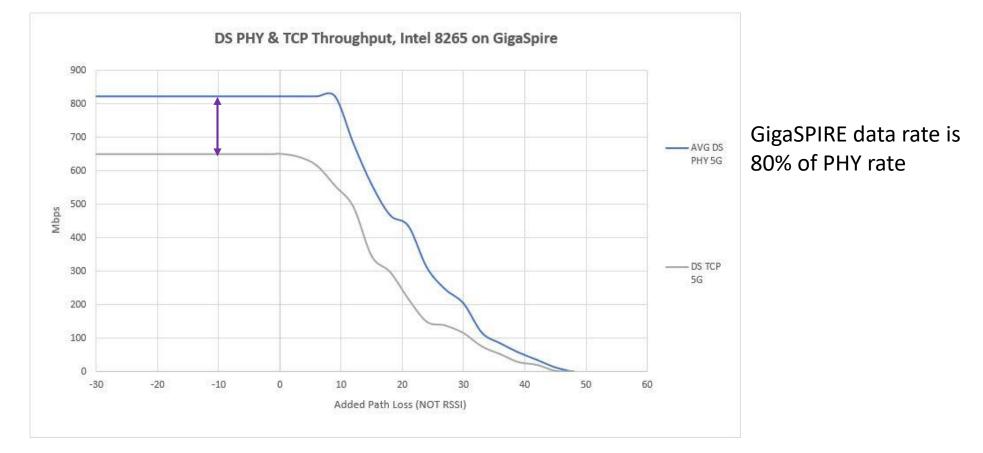
- Any Wi-Fi device, including the 8x8 11ax AP, is capped by FCC transmit power limits, and a 3x3 Macbook 11ac client cannot receive more than 3 spatial streams
 - Can the Macbook performance still be improved with the 8x8 AP?
- Yes, twice as many transmit antennas reduces the power per radio chain, improving RF fidelity at high data rates
- Yes, receiver benefits from 8x8 diversity vs 4x4 (no FCC limits on sensitivity)

Wi-Fi Test Chamber

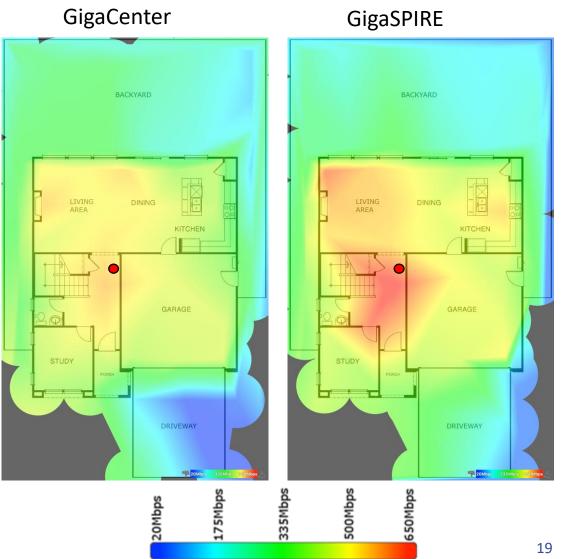
Two major ways of testing Wi-Fi performance

- 1. Cabled testing from AP to client repeatable but not realistic and requires removal of antennas on AP and client
- 2. Over the air (OTA) Allows realistic testing with antennas but suffers from outside interference and is less repeatable
- Calix test environment has combined the best of both worlds, no cables yet repeatable and free of external interference

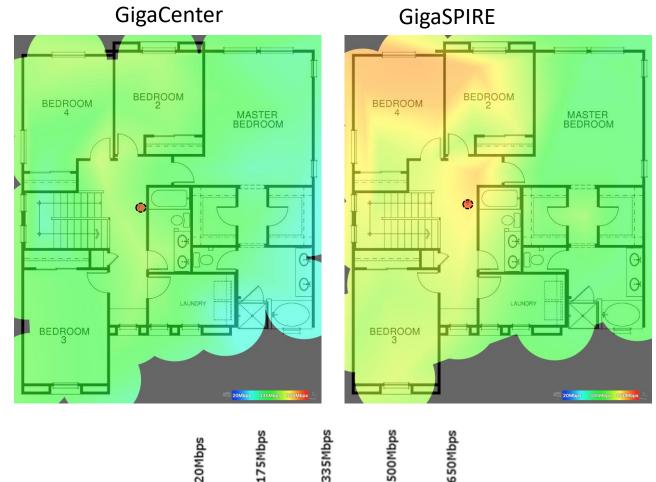
Wi-Fi Test Chamber – 4x4 Antenna


• Real data throughput rate is never has high as the PHY rate

Real Packet rate is about 50% of the reported PHY rate for the GigaCenter

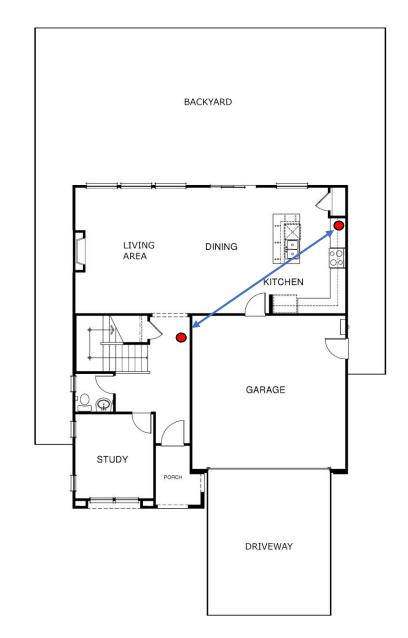

Wi-Fi Test Chamber – 8x8 Antenna

• Real data rate with 8x8 device is closer to the PHY rate


Wi-Fi Test Home Throughput Tests - Downstairs

- GigaSPIRE achieves higher peak data rates of > 600 Mbps (red) and has virtually no areas of the home that are less than 100 Mbps (blue).
- Conditions
 - TCP Throughput Testing
 - Client used in testing: MacBook Pro 3x3 MIMO 802.11ac
 - Stucco on wire mesh exterior walls
 - 50-60 Test Points per floor

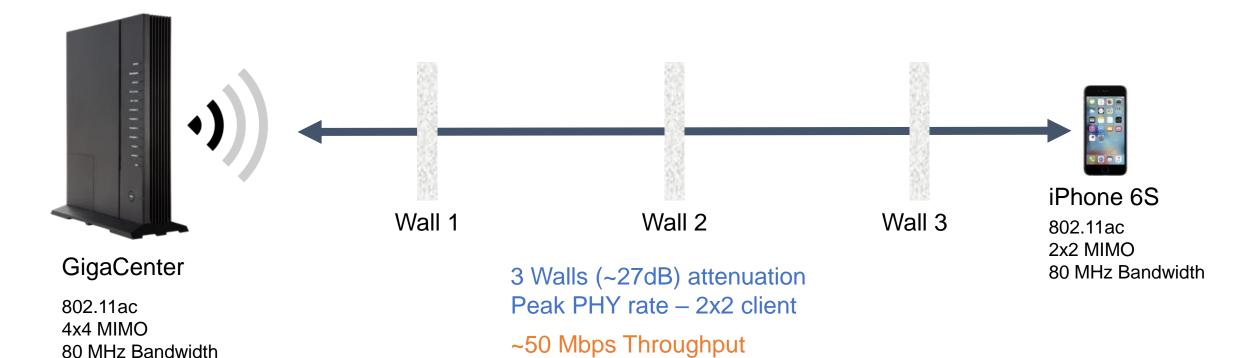
Wi-Fi Test Home Throughput Tests - Upstairs


- GigaSPIRE achieves upstairs peak data rates of > 500 Mbps (orange) and has virtually no areas of the home that are less than 100 Mbps (blue).
- Conditions
 - TCP Throughput Testing
 - Client used in testing: MacBook Pro 3x3 MIMO 802.11ac
 - Stucco on wire mesh exterior walls
 - 50-60 Test Points per floor

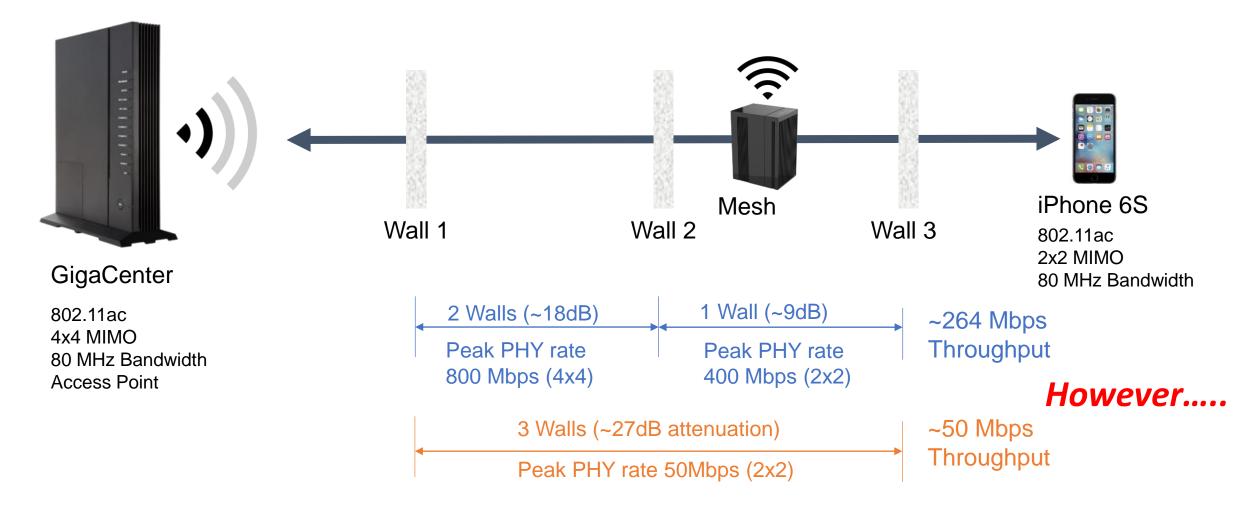
Wi-Fi Backhaul Performance

- GigaCenter Backhaul PHY Rate 700 Mbps
- GigaSPIRE Backhaul PHY Rate –
 1300 Mbps

GigaSPIRE backhaul provides the closest thing yet to a "Wireless Ethernet Cable"

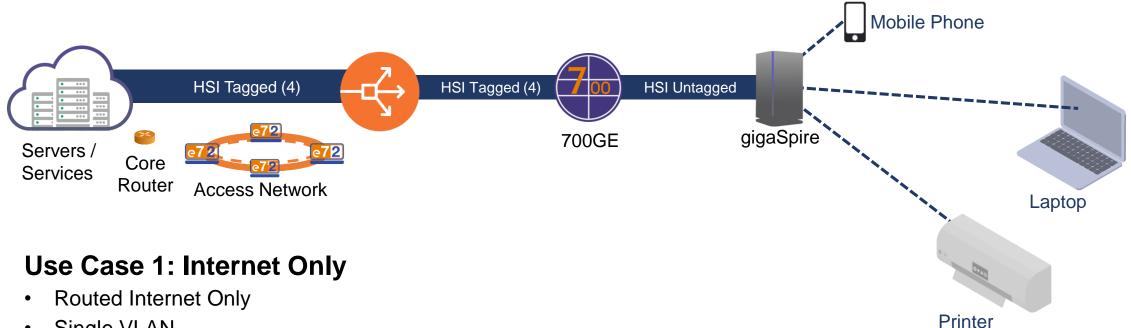

Mesh-Enhanced Carrier Class Wi-Fi

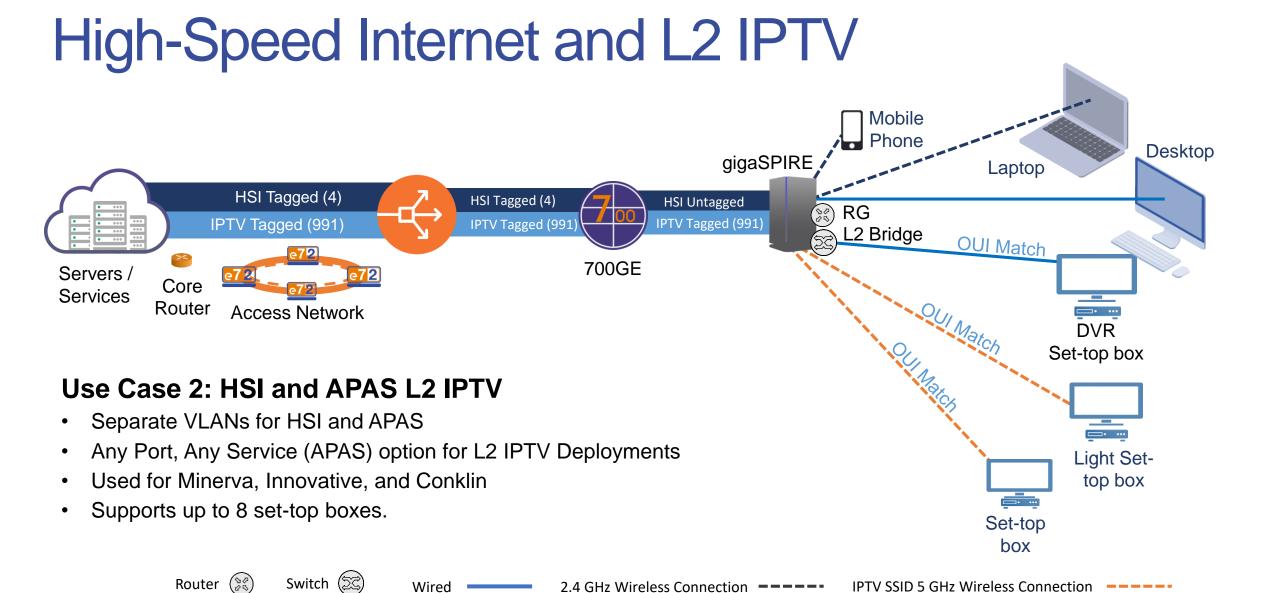
Why are more than one Access Points needed in some homes?



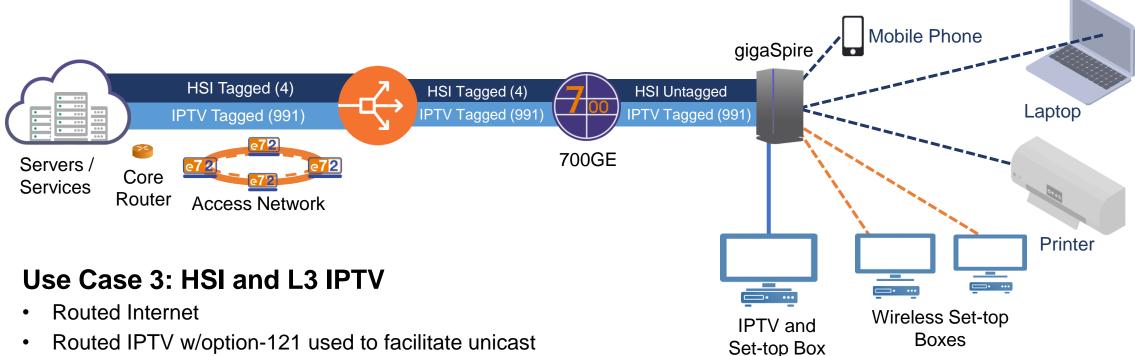
Wi-Fi Has a Physics Problem: Attenuation

Access Point


Wi-Fi Has a Physics Problem: Attenuation

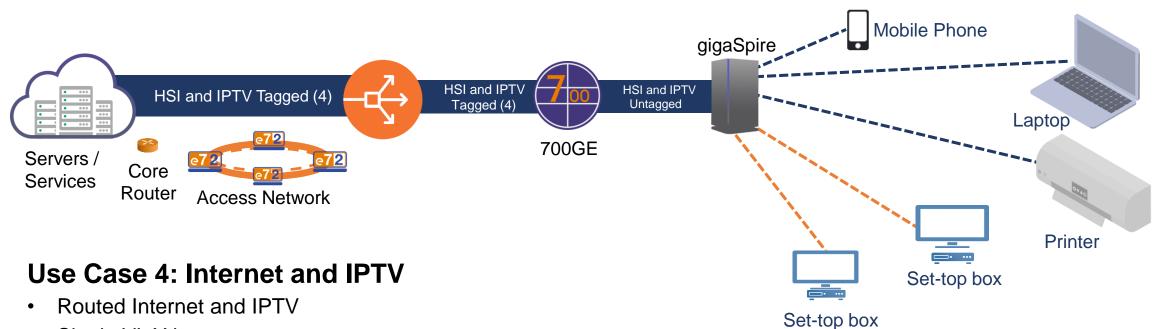

Access Network Use Cases

High-Speed Internet Only


• Single VLAN

Wired

27


High-Speed Internet and L3 IPTV

- Routed IPTV w/option-121 used to facilitate unicast traffic over the video service WAN VLAN
- Used for Mediaroom and Minerva 5.7+ deployments
- Supports up to 8 set-top boxes.

Wired

High-Speed Internet and IPTV 1 VLAN

- Single VLAN
- Used for Internet/Mediaroom deployments

The Wireless Network

Best Practices

SSID Best Practices

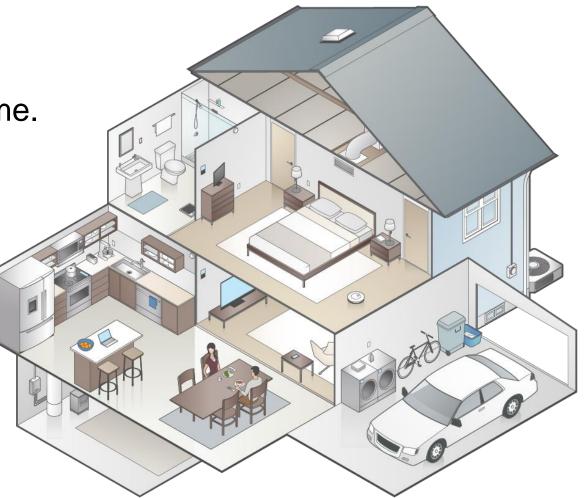
- Enable only SSIDs necessary to connect to the wireless network.
- Define a naming convention that works best in your organization.
- Hiding SSIDs does not secure the wireless network.
- Educate subscribers about naming SSIDs and how to avoid making SSIDs obvious to neighbors.
 - Example: Homer and Marge's House
 - Example: Bart's Wi-Fi
- Educate subscribers about not sharing their SSID (and passphrases) with neighbors.

-Fi Primary		Good
SSID	HillValleyTelco_CXNK005A77DD	SSID Name
Hide SSID	Off Set separate SSID nam	nes for 2.4GHz and 5GHz
Security Type	WPA2-Personal	•
Security Key	\$=rothLyA7eH	
Apply		
i-Fi Primary		Bad

Wi-Fi Primary		Bad
SSID	Homer and Marge's House	SSID Name
Hide SSID	Off Set separate SSID na	ames for 2.4GHz and 5GHz
Security Type	WPA2-Personal	-
Security Key	Bart's Wi-Fi	
Apply		

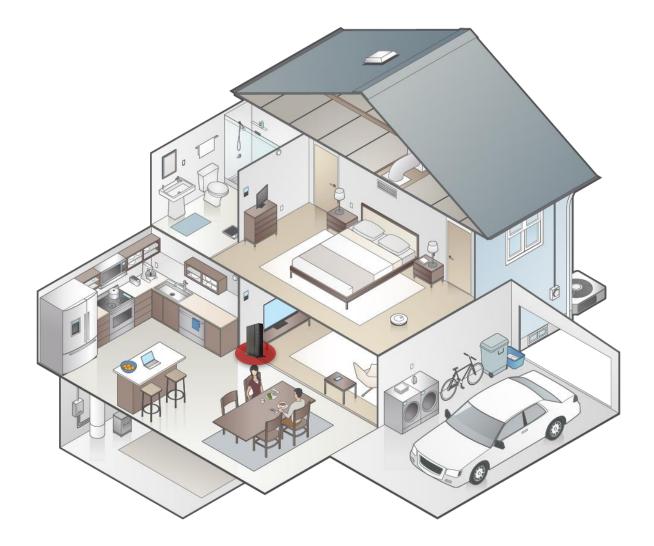
Securing the Wireless Network

- WPA2 Personal provides the best security currently available.
- AES replaces TKIP as the best secure option. It uses up to 256-bit encryption to secure data.
- Create strong passphrases (passwords)
 - Use a mix of upper and lower case letters with numbers and special characters.
 - Spaces, periods, underscores, and asterisks are allowed in naming passphrases.
- MAC Authentification
 - Not enough to secure a network.


Wi-Fi Primary	
SSID	HillValleyTelco_CXNK005A77DD
Hide SSID	Off Set separate SSID names for 2.4GHz and 5GHz
Security Type	WPA2-Personal 🗸
Security Key	\$=rothLyA7eH
Apply	

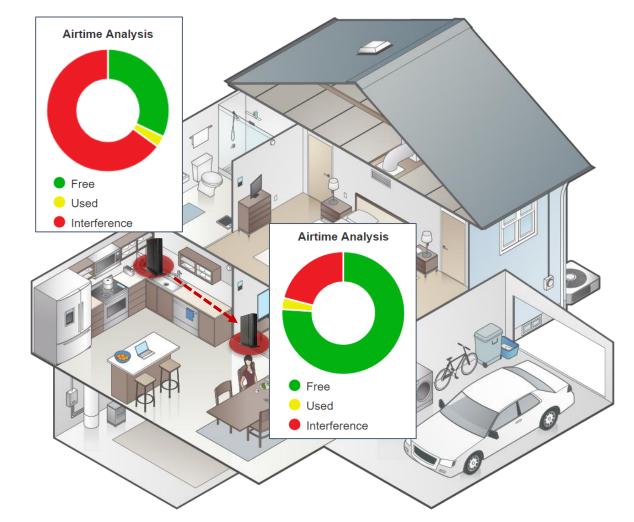
Maximizing Wireless Network Performance

- Perform Site Observations / Site Surveys
- Determine Access Point Location
- Configuring Wireless Settings on the Access Point
- Perform Wi-Fi Analysis


Site Observations

- Locate the fiber/coax cable in the home.
- Look for interferers in and around the home.
 - Cement and brick material
 - Double-pane and tinted glass
 - Mirrors
 - Wireless sound bars
 - Baby monitors

Access Point Location


- Place access points high and in the center of the home whenever possible.
- Avoid placing the main access points in the basement.
- View Wi-Fi Analyzer tools to check Wi-Fi usage.
 - Example: Wi-Fi Analyzer
 - Example: Wi-Fi Smart Check and current Air Time Analysis in Calix Support Cloud

Determine the Best Location

- Use Wi-Fi Analyzer to determine the best location.
- View real-time air time utilization as you move the device around.
- View air time utilization for both 2.4 and 5 GHz.

Wi-Fi Analyzer is located in the Support area of the EWI of GigaFamily Devices 2018CALIX CONNEXIONS INNOVATION AND USER CONFERENCE

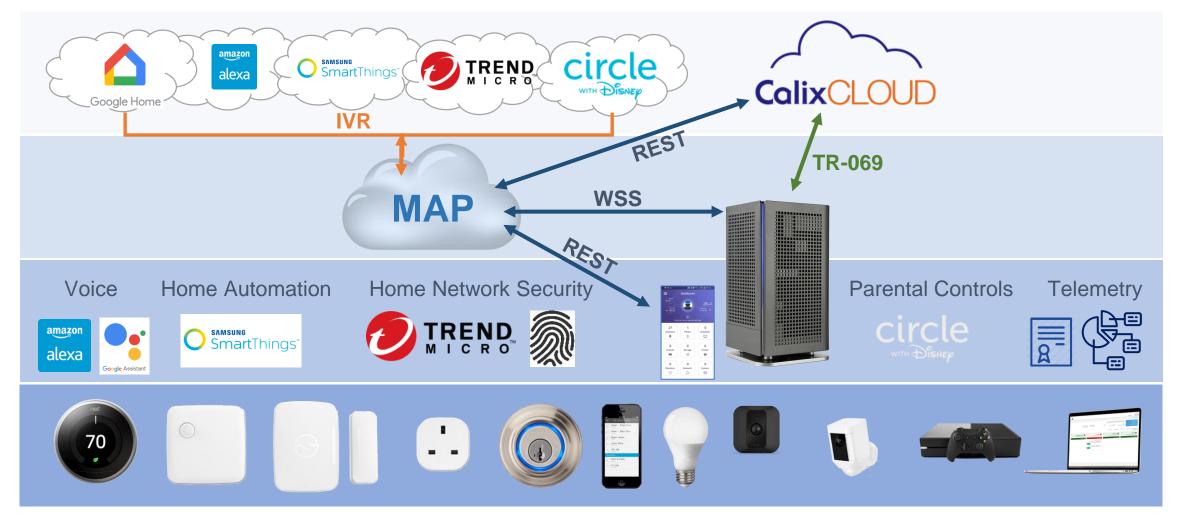
Configuring Wireless Settings on the Access Point

- Isolate legacy devices from hogging air time away from modern devices by removing 802.11b from the Mode to prevent old devices from connecting.
- In some rare cases, it's optimal to reduce the 5 GHz bandwidth since the wider the signal bandwidth, the shorter the distance covered.
- Allow devices to **auto-select** the best **channel** that is less crowded with the least interference.
- For the 5 GHz radio, when possible allow use of additional channels in the 5 GHz band (**DFS Channels**).

Wireless Radio	On	2.4 GHz Radio
Mode	802.11n and 802.11g	•
Bandwidth	20 MHz	•
Channel	auto	~
Power Level	100%	•
Apply		
2.4G 5G Wireless Radio	On	5 GHz Radio
	On 802.11ax, 802.11ac and 802.11n	5 GHz Radio
Wireless Radio		
Wireless Radio Mode	802.11ax, 802.11ac and 802.11n	•
Wireless Radio Mode Bandwidth	802.11ax, 802.11ac and 802.11n 80 MHz	•

Ex. gigaSPIRE EWI

Wi-Fi Analysis – Today

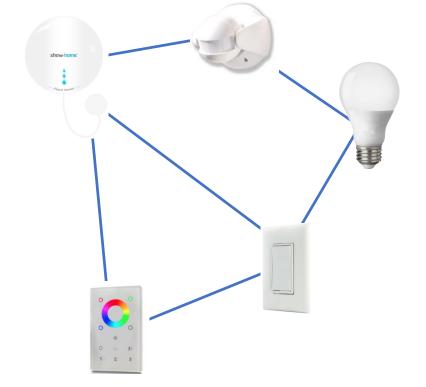

Start Site Scan	Filters:	SSID		Channel		×
SID		Channel	RSSI	Security	Channel Bandwidth	BSSID
hood1		2	-89dBm	WEP	20MHz	00:0F:8F:21:74:F1
eegle		3	-86dBm	WPA-WPA2	40MHz	14:91:82:BD:25:2B
TT031		4	-87dBm	WPA-WPA2	20MHz	74:9D:DC:B2:3C:1A
		6	-36dBm	WPA2	20MHz	A0:04:60:C1:20:1B
ish1Net24G		0	-Journa		201112	
Kish1Net24G suddenlink.net-7C4B nowing 1 to 5 of 9 entri SSIDs	es Busyness: 🗷 20MHZ	11	-77dBm	WPA-WPA2	20MHz	2C:99:24:54:7C:49
uddenlink.net-7C4B owing 1 to 5 of 9 entri SSIDs					20MHz	2C:99:24:54:7C:49 Previous
uddenlink.net-7C4B owing 1 to 5 of 9 entri SSIDs				WPA-WPA2	20MHz	2C:99:24:54:7C:49 Previous 1 2 Next WiFi4Me_Net1
uddenlink.net-7C4B wing 1 to 5 of 9 entri SSIDs 10 -10 -20 -30					20MHz	2C:99:24:54:7C:49 Previous
uddenlink.net-7C4B wing 1 to 5 of 9 entri				WPA-WPA2	20MHz	2C:99:24:54:7C:49 Previous 1 2 Next WiFi4Me_Net1 100 90 80

View neighboring devices using Calix Support Cloud.

Wi-Fi Score 🕕	Device Type	Host Name	IP Address	MAC Address	Mode	SSID	DS PHY Rate	US PHY Rate	Packets Dropped DS	SNR	Signal	Radio
N/A	😐 (IntelCor)	RIC-KBARREE-10	192.168.1.7	e4:a4:71:36:c9:37	802.11ac	GC5	351Mbps	130Mbps	11	-1dB	((i-	5 GHz
lient Wi-Fi Sco Weekly Wi-Fi Sc	ore on 3 devices											
		Host Name	IP Address	MAC Address	Mode	SSID	DS PHY Rate	US PHY Rate	Packets Dropped DS	SNR	Signal	Radio
Weekly Wi-Fi So Wi-Fi Score (1)	ore on 3 devices	Host Name iPad3	IP Address 192.168.1.4	MAC Address 1c:ab:a7:b6:c5:c2	Mode 802.11n	SSID GC5	DS PHY Rate 65Mbps	US PHY Rate 65Mbps	Packets Dropped DS	SNR 19dB	Signal	Radio 5 GH:
Weekly Wi-Fi So	core on 3 devices Device Type										-	

View subscriber devices and Wi-Fi performance using Smart Check Client Devices in Calix Support Cloud.

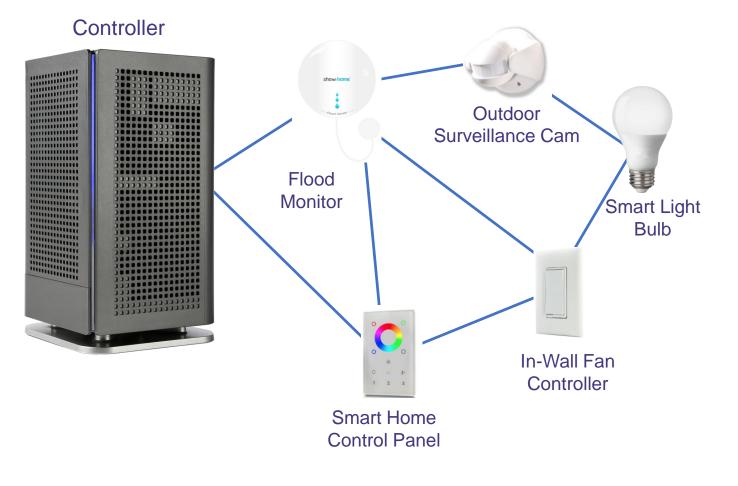
Wi-Fi Analysis – Tomorrow



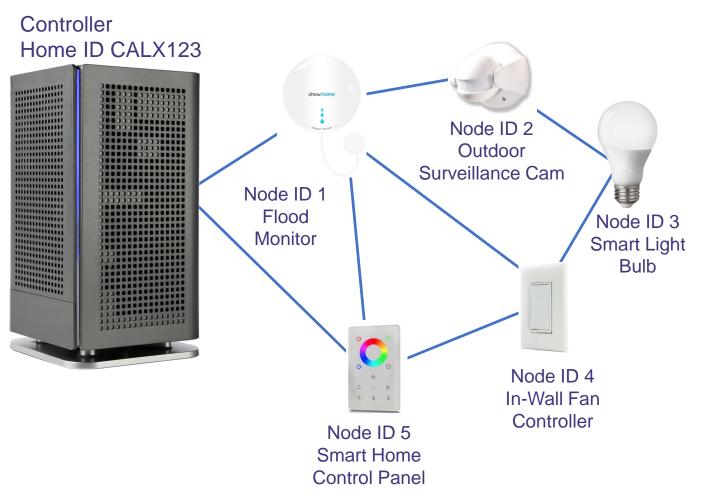
MAP - Micro-services Aggregation Platform

IVR – Interactive Voice Response

Get to Know Smart Home Technologies


- **ZigBee and Z-Wave** are low-bandwidth communication protocols designed for controlling smart home devices.
- ZigBee and Z-wave uses radio frequencies.
 - ZigBee 2.4 GHz
 - Z-Wave 908.42 MHz
- Devices must be compatible with ZigBee or Z-Wave to leverage the smart home technology.
- The estimated range for Z-Wave/ZigBee enabled devices is up to 100 meters (328 ft).
 - Ideally 100 feet for no obstructions and 50 feet with walls in between with no signal hopping.

Note: ZigBee and Z-Wave are not compatible with each other.


Smart Home Topology

- A Z-Wave network contains at least one controller.
- Devices connected to the controller are called nodes.
- The controller allow devices (nodes) to join or be removed from the network.
- All non-battery powered devices are used to create a wireless selforganizing network.
- Up to 232 devices, nodes can be added to the Z-Wave Network.
 - ZigBee has no concrete limit.

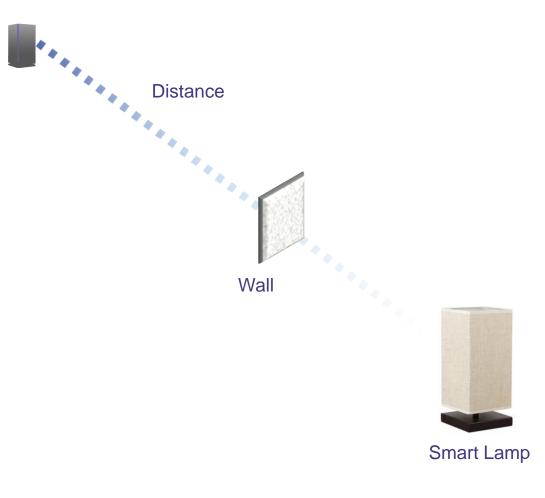
Calix Smart Home Topology

- Controllers contain unique IDs that are not labeled the same. The unique IDs are called Home IDs.
- Home IDs prevent you from being able to control your neighbor's devices.
- Nodes contain unique IDs.
 IDs cannot be labeled the same.
- Node IDs ensure that the signal goes to the device it is intended for.
- AES 128-bit encryption.

Recommended Installations

- Calix Smart Home is intended for single-family units.
- Calix Smart Home can be deployed in multi-dwelling units, but separate networks must be setup for each family.
 - If used in a high-rise, the building materials are often not RF-friendly.
- Calix Smart Home is not recommended for large commercial or industrial networks.

Single-Family Units



Multi-Dwelling Units

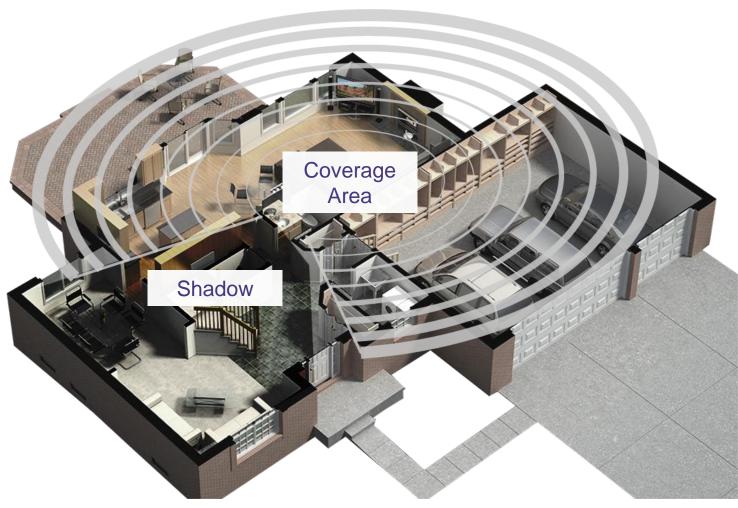
What can Impact Smart Home Performance?

- Path loss is the loss of signal. It is also known as attenuation.
- Causes of path loss:
 - Distance
 - Obstacles and the materials they are made of.
 - Performance of the radio frequency (RF) signal
- Key Smart Home scenarios installers should know.
 - Vacuum Fade
 - Shadow
 - Reflection

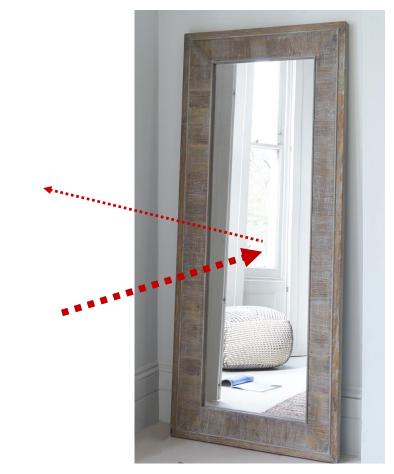
Building Materials and Path Loss

Material	Thickness	Worst Case Signal Attenuation
Glass	.25 inch	10%
Drywall	< 4 inch	30%
Wood	3 inch	30%
Stone	10.5 inch	70%
Concrete	4 inch	70%
Concrete	8 inch	90%
Reinforced Concrete	4.5 inch	95%
Concrete	12 inch	98%

2018 CALIX CONNEXIONS INNOVATION AND USER CONFERENCE


Vacuum Fade

- Vacuum Fade occurs when a device fails or if a device was plugged into a switch outlet and someone turned off the switch.
- There are two stages used to address vacuum fade.
 - Anticipate
 - Detect problem areas beforehand.
 - For new home instructions, determine if an outlet can be added.
 - Can a Z-Wave/ZigBee outlet be added instead of a plug-in module?
 - Can you find a module with a pass-through plug?
 - Diagnose
 - Ask the subscriber about any failures and what changes they made before the failures.


Shadows

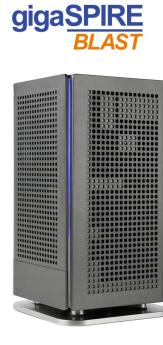
- A shadow occurs when the attenuation of a signal going through building material create an RF dead spot.
- Installers should identify shadows.
- Installers can add repeaters to strengthen Z-Wave mesh networks to eliminate shadows.

Reflection

- Reflections occur when the wireless signal bounces off an object.
- Reflections are not avoidable and can cause interference due to time delays of the reflection, also known as multi-path or phase interference.
- The solution is to add always-on devices to strengthen the self-organizing mesh network.

Calix Wireless Network Solution Overview

Calix GigaFamily



804M

gigaSPIRE

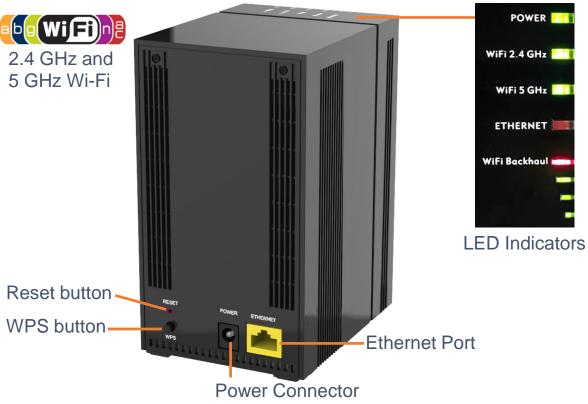
GS2026E

800G

ETHERNET

The image shown is an 854G GigaCenter. The 844G does not contain an RF overlay.

804Mesh Satellite Specifications


Dual Band Wi-Fi Range Extender

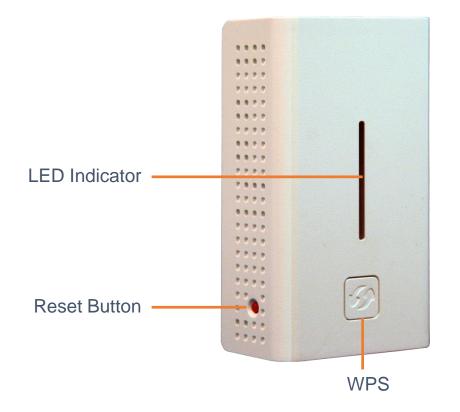
- 2.4 GHz 802.11 b/g/n 2x2 MIMO, highpower
- 5 GHz 802.11 a/n/ac 4x4 MU-MIMO, implicit/explicit dynamic beamforming
- IEEE 802.11v BSS Transition Management
- Wired: 10/100/1000 BASE-TX Ethernet Port, RJ-45 connector

Interoperability

- 800G, 844GE, and 844E
- TR-069 remote management
- TR-098 Internet Gateway Device Data Model

Wi-Fi Alliance Certified

gigaSPIRE


The gigaSPIREs Blast and Max share the same physical features except the Blast does not have a sound jack and there are no controls at the top.

gigaSPIRE Comparison

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	3

	GS2026E	GS2020E
WAN	10/100/1000 Ethernet or Wi-Fi	10/100/1000 Ethernet or Wi-Fi
LAN	10/100/1000 Ethernet	10/100/1000 Ethernet
Wi-Fi	5 GHz – 802.11ax/ac/n - 8x8 MIMO 2.4 GHz – 802.11ax/g/n - 4x4 MIMO	5 GHz – 802.11ax/ac/n - 8x8 MIMO 2.4 GHz – 802.11ax/g/n - 4x4 MIMO
IVR (Interactive Voice Recognition)	Yes	N/A
ΙοΤ	ZigBee / Z-Wave	N/A
Bluetooth	BT / BLE	N/A
POTS	N/A	N/A
Dimensions	5″ x 5″ x 9″	5" x 5" x 9"

gigaMESH

gigaMESH Specifications

Dual-band Wi-Fi Range Extender

- 2.4GHz 802.11b/g/n
 - 2x2 MIMO
- 5GHz 802.11a/n/ac
 - 2x2 Downlink (DL) MU-MIMO
 - Implicit/explicit high-power, dynamic beamforming

Wired

- 10/100/1000 /Base-TX Ethernet Port
- RJ-45 connector

Wi-Fi multimedia (WMM)

Power: 2-pin wall socket plug-in

Wi-Fi Alliance Certified

Questions?

2018 CALIX CONNEXIONS INNOVATION AND USER CONFERENCE